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Abstract— We propose an algorithm that uses energy mini- manner. The approach does not rely on modifying the item
mization to estimate the current configuration of a non-rigid  in any way (e.g., with handcrafted fiducial markers) but
object. Our approach utilizes an RGBD image to calculate j,st05q yses SURF feature correspondences along with novel
corresponding SURF features, depth, and boundary informa- .
tion. We do not use predetermined features, thus enabling our depth and boqndary terms to ensure that the mesh r(?malns
system to operate on unmodified objects. Our approach relies accurate even in untextured areas. Results on severakditfe

on a 3D nonlinear energy minimization framework to solve for examples demonstrate the effectiveness of the approach.
the configuration using a semi-implicit scheme. Results show
various scenarios of dynamic posters and shirts in different II. PREVIOUS WORK

configurations to illustrate the performance of the method. Emeraina research on non-rigid obiects includes motion
In particular, we show that our method is able to estimate ging 9 )

the configuration of a textureless nonrigid object with no Planning algorithms for deformable linear objects (DLOs)
correspondences available. like ropes, cables, and sutures [13], [14]; Probabilistic

RoadMap (PRM) planners for a flexible surface patch [15]
I. INTRODUCTION or deformable object [16]; learning approaches to sense
Having concentrated on rigid objects for decades, robotand model deformable surfaces [17], [18], [19]; and fabric
cists have begun to turn their attention toward the manipulananipulation for textile applications [20], [21], [22]. |par-
tion of non-rigid objects. Among the several applicatioeaa ticular, the problem of automating laundry has been rengivi
motivating such investigation is that of automatic laundnattention recently because of the increasing availabdity
handling. The ability of robots to locate clothing, idewtif calibrated two-handed robots like the PR2. Researchers hav
clothing, manipulate and fold clothing, and so forth woulddemonstrated systems for grasping clothes [4], [5], faJdin
be a tremendous asset to the increasingly promising field ofothes [6], [1], [2], [3], [7], and tracing edges [8], [9].
domestic robotics. Notable progress has been made in rec&alated research has addressed folding origami [23],rHgldi
years in developing systems capable of folding a T-shirt [1towels [9], unfolding laundry [10], classifying clothin@4],
[2], matching socks [3], and classifying articles of clotlpi [25], and pairing socks [11]. Despite the progress in manip-
[4], [5], [6], [7], [8], [9], [10], [11], among other tasks. ulating non-rigid objects, none of this research addregses
One of the core competencies in handling non-rigid objecieroblem of estimating the 3D geometry of a non-rigid object.
such as clothing is the ability to estimate the configuratibn  Two recent research projects have independently aimed at
the item, that is, a parameterization of the 3D coordinafes the goal of non-rigid 3D geometry estimation. Bersch et al.
the various points on its surface. Unlike a rigid object, ado [26] use fiducial markers printed on a T-shirt. An augmented
3D pose is characterized by six values, a non-rigid itemeality toolkit is used to detect markers, and stereo imager
such as clothing has essentially infinite degrees of freedons used to automatically generate a 3D triangular mesh.
making its configuration much more difficult to recoverWhen the article of clothing is picked up, the grasp point
Nevertheless, the ability to estimate this configuratiomlo is inferred from the distances from the end effector to the
aid in grasping and planning tasks as well as folding andsible markers which then leads to a succeeding grasp point
unfolding. in a two-handed robotic system. Similarly, Elbrechter et al
In this paper we address the problem of estimating the 3[27] print specially designed fiducial markers on both sides
configuration of a known non-rigid object such as an articlef a piece of paper. Multi-view stereo vision is used to
of clothing, piece of paper, or bendable poster. The item isstimate the 3D positions of the markers which are then sent
modeled as a triangular mesh whose 3D coordinates cote-a physics-based modeling engine. In addition to using two
pletely specify the configuration of the item. Our approaclscomputers to control the two hands, three computers are used
formulates the problem as one of energy minimizationfor data acquisition and processing.
building on the work of Pilet et al. [12] by extending mesh A large amount of research has been conducted in the
estimation to 3D. By combining internal energy constraintsomputer vision community in recent years on the problem
with data terms that take into account the informatiomf non-rigid structure from motion (NRSfM) for either inan-
available from an off-the-shelf RGBD sensor, the systerimate objects [28], [29], people [30], [31], [32], or both3[3
is able to estimate the item’s configuration in an efficienf34], [35]. These approaches utilize the movement of festur



within a 2D video sequence to recover the 3D coordinates

of the preimages of the features in the scene. An alternate (Us) -
approach is to estimate a triangle “mesh soup” [35] or Igcall w g
rigid patches [28] to yield a reconstruction in the form of a 3
triangulation. In contrast with NRSfM, our goal is to regist ——vV-¥-¥=¢—%"% {¥s, ¥c} 5
the 3D non-rigid model with the incoming RGBD sequence, g
similar to the 2D-3D registration of Del Bue and colleagues oo e y
{Us, Ve, Up)
[36] [37].
In an effort to develop a system capable of handling real, oo OO —°

unmodified objects, our work aims to remove the need for Al

fiducial markers. Our approach is inspired by, and based

upon, the research of Pilet et al. [12] which formulates the

problem of 2D mesh estimation as energy minimization. Iig. 1. Each of the energy terms contributes to improving thbeftveen

related work, Salzmann et al. [38], [39] describe an apmoaéhe mesh and the object. Left: Front view of an example meshauong

hat t in 3D but . th tricted i regular vertices (red dots), boundary vertices (blue datsyl vertices near

tha .o-pera_ es in h ut requires the restric .e as_sumP : ge texture (green dots). Right: Top view of mesh. From topdiom,

of rigid triangles in order to reduce the dimensionalitythe smoothness term ensures low derivatives in the mesh, taetetm

Salzmann et al [40] present a method for |earn|ng |00£U”3 the mesh toward the correspon_dencgs (_green dOtS),aﬁm derm

def ti dels for textured and texturel bieals Omoves vertices along the sensor viewing direction, and thedary term

erormafion modeis _Or extured an _ e_X ureless objeds. Ujnyoquces lateral forces to increase the fit at the bouaddblue dots).

approach extends this research by finding locally deforeabl

3D triangular meshes without fiducial markers whether in-

tensity edges are present around the boundary of the obj¢t®]. Let E be the set of all vertex index triplets such that

or not. (i,4,k) € E means that;, v;, and ¢, form two connected,

equidistant, and collinear edges in the projected canbnica
Ill. APPROACH _ ~ mesh. Since the projected canonical mesh is formed from

Let V. = (vi,...,v,) be then vertices of a 3D tri- equilateral triangles, we have
angulated mesh, where, = (z;,y;,2;) contains the 3D o o o
coordinates of theth vertex. The state vectdr captures Vi = U =V — Uk v(i,j. k) € E, ®3)

the shape of the mesh at any given time, where we haggsuming that the initial configuration is approximately

omitted the time index to simplify the notation. fronto-parallel. Therefore, in the deformed mdshwe want
Our goal is to find the most likely mesh* in each frame, this to approximately hold:

by finding the shape that minimizes the energy of the system:

V* = argmin U(V). 1)

v; — 2v; + v =0, v(i,j,k) € E 4)

which leads to the following smoothness term:
We define the energy functional as the sum of four terms: 1

Ug(V) == (zi — 275 + x%)?

U(V) = Us(V)+AcTe (V) +Ap U (V)+A5T5(V), (2) (i,j,zk):eE ’

where¥s(V) is a smoothness term that captures the internal +(yi — 2y; + yx)?

energy of the meshf (V) is a data term that seeks to +(zi — 22 + Zi)2. (5)

ensure that corresponding points are located near each othe

U5 (V) measures the difference in depth between the meshLe€t

vertices and the input, ani (V) is the boundary term that X
regulates the mesh vertices located on the boundary of the v - T 7
object. The weighting parameteds:, Ap, and Az govern = [ Yn }T (7)
the relative importance of the terms. Z = [z 22 - 2] (8)

_Each qf the energy terms_are_ useful in different scenarioge yectors containing the, y, and > coordinates, respec-
Figure 1 illustrates the contribution of each energy termafo tively, of the deformed mesh. Extending the work in [12] to

toy example of a horizontal slice of vertices from the mesl’gD’ the above equation can be rewritten in matrix form as
We now describe the energy terms in detail.

(21 xa - @n]" (6)

A. Smoothness term Us(V) = YolKeX)" Ko X
. Let V _ ~ ~ h ~ N A A b + 1/2 (KcolY)TKcolY
et V.= (b1,...,0,), whered; = (&;,%;,%), be a YR Z Koz, @)

hexagonal grid of equilateral triangles that is createHeeit
off-line or from the first image of the video sequencewhereK,, is ann.,; xn matrix, wheren,,; is the number of
We will refer to V' as thecanonical mesh. Except for the collinear triplets. We have..,; ~ 3n, where the boundaries
boundaries, each vertex in the canonical mesh has, wheause the approximation. The elements of the malijy;
projected orthogonally onto the = 0 plane, three pairs contain the valud), 1, or —2 depending upon the relation-
of collinear adjacent points passing through it, similar tships within each triple(i, j,k) € E. Each row of K.,



2) SURF descriptors and putative matchinlgt order to
capture correspondences between consecutive frames, the
Speeded Up Robust Feature (SURF) detector and descriptor
[41] is used. SURF is a fast and robust feature selector that
is invariant to scale and rotation, providing interest tamas
throughout the image. SURF detects features throughout the
image, but a simple foreground / background segmentation
procedure using depth values is used to remove SURF
features on the background, leaving only features on the
Fig. 2. Example of barycentric coordinates. The pdiptin one of the triangular mesh.
equilateral triangles in the canonical mesh (left) retatagélative position Putative matching of the SURF descriptors is used to es-
within the triangle as the triangle is deformed (right). tablish sparse correspondence between successive inmages i

the video. For each pair of descriptors, the Euclidean nligta

is computed, and the minimum is selected as the proper
corresponds to a triple within the triangle mesh, and eaq@ature match. Only the top fifty percent are chosen based on
element in the row has a value of zero except for the thrggie minimum Euclidean distances of the feature descriptors
locations ofi, j, k which containl, —2, and1, respectively. 1o improve robustness, feature matching is constraineie to |
Each column ofK.,; corresponds to a vertex within the within a given threshold of a location of the feature in the
mesh and has nonzero elements for the triplets containirpﬁ;e\,iOus frame of the sequence, assuming that the motion is
the vertex. small in consecutive frames.

The above expression can be simplified as follows: 3) Correspondencestet C = {(¢;,¢;)}™, be the set of
m correspondences between the canonical image and the
input image. A specific corresponden@g, ¢;) indicates that
the 3D pointé; in the canonical image matches the 3D
éhoint ¢; in the input image, wheré; = (&, Jei, 2¢;) and
¢i = (Teiy Yeir 2ei) fOri = 1,...,m. The data term is the sum
of the squared Euclidean distances between the input point
coordinates and their corresponding canonical coordinate

Us(V) = Yo XTKX +YTKY +Z'KZ),  (10)

where K = KcTochoz is ann x n constant matrix capturing

the collinear and adjacent vertices in the canonical me
using E.

B. Correspondence term
1 .
The correspondence term uses the input data of the current Ve(V) =3 S lle—Tv(@) |? (13)

RGBD image to compare a possibly deformed m&stith (éi,ci)€C
the canonical mesk.

1) Barycentric coordinates:Suppose we have a point
p = (z,y,2) in the canonical RGBD image that happens The depth term measures the difference betweenzthe
to lie within the triangle defined by vertices, ©,, and coordinate of each 3D vertex in the current mesh and the
75, as illustrated in Figure 2. The barycentric coordinateseasured depth value. That is, it measures the distancg alon
of p are defined as the tripl€3;, 3;, 0;) such thatp = the ray passing through the 3D vertex to the current depth
Biti + B;0; + By and §; + B; + B = 1. Givenp, we image obtained by the RGBD sensor:
compute its barycentric coordinates by solving the system

of equations Up(V) = = Z (@i, ) — 2, (14)
i=1

Ty — Tp i'j_i'k:| {@}:[CE—@C} (11)
U= Ui — 0] |55 y— T where d(z;,y;) is the value of the depth image evaluated
. ) o at the position(x;, y;), while z; is the depth of the vertex
for 5; and§;, then settingdy = 1 —(3; — §;. If p lies within ¢ that same position. This term is designed to ensure that
the triangle, then the barycentric coordinates will liehint o mesh fits the data even in textureless areas where no
0 and 1, inclusivep < 3;, 85, B < 1; and thez equation correspondences can be found.
will also be satisfied(2; — 2¢)8; + (£; — 2x)0; = z — 2.
Now suppose that the mesh has deformed fiiénto V. D. Boundary term

If we assume that the relative position pfin the triangle

C. Depth term

remains fixed, then we can define the transformation: We define bOUndary vertices to be those vertices that do
not have six neighbors. For every boundary vertex, we expect
Ty (p) = Bivi + Bjvj + Brvk, (12) it to remain near the boundary of the object even as it

undergoes non-rigid deformations. Figure 3 illustrates th
wherev;, v;, andv;, are the 3D coordinates of the deformedneed for the boundary term in textureless areas. To ensure
mesh vertices of the triangle in whighlies. Ty (p) yields this result, the boundary term captures the distances betwe
the 3D coordinates gb when the mesh is described by boundary vertices and the nearest 3D boundary point within



YA

but zeros everywhere else:
Tv(p) = VB, (19)

the partial derivatives for the correspondence term are as
follows:

} 2 2 dVc(V)
4 | V4 Tl = - T X' @
@ T TRy =4/) = iyCi
%[7 JW (N%V) - Y (Wa-Y"B)B  (21)
@ Dﬁ @, @ ~ , (erenec
] aq%(v) Y (a-Z"B)B  (22)
(éhci)ec

Fig. 3. An example illustrating the need for the boundary tefop: As
a vertical object is increasingly slanted over time (front tef right), the
vertices deviate from their true location, due to the liniitatof the depth

The partial derivatives for smoothness for straightfodvar

term to induce only forces parallel to the viewing directi@gndicated by ags(v)
horizontal light blue arrows). Bottom: With the boundarynteimposing =KX (23)
lateral forces, the mesh vertices remain in their proper iocst 8\5§V)

S

)4 (24)
the image, as determined by the foreground / background oVs(V) —KZ (25)
segmentation procedure: 07

Up(V) = 5 3 (oulw) — gs@)7,  (19)

v, €EB

whereg;(?;) is the distance from the canonical vertgxto

The partial derivative of the depth term is similar to that
of the data term. Rewriting; using ann x 1 vector F;
containing a one in théth slot but zeros everywhere else:

the nearest boundary point in the canonical iméggd(vi) zi = ZTF;, (26)
is the distance from the current vertex to the nearest

boundary point in the current imagé and B is the set yields

of boundary vertices. This term introduces lateral forces o

the vertices to ensure the mesh fits the data in textureless AVp(V) - T

regions when the object’'s motion has components parallel to a7 Z(d(% yi) = Z° F)FE, @7)

the image plane.

E. Energy minimization

i=1

Similarly, the partial derivatives of the boundary term
require rewritingv; using the same vectar;:

Our goal is to locate the mesh that best explains the

data while adhering to the smoothness prior. To find the ga(vi) = VI F;, (28)
configuration of minimum energy, we compute the partial
derivative of the energy with respect to the vectdfs Y, |eading to
and Z, and set the result to zero:
\\
o) _ 9¥s(v) 9%c(V) NWeV) > (AX (i) — XTF)F;  (29)
ax axX X 0X et
oV (V) oVp(V) OV p(V A
A= T A5 (16) %) = =) (AY (&) - YTF)F;  (30)
= C
oy oY oY o5(V) — > (AZy(6) - Z"F)F,  (31)
.\ oY p(V) L ov (V) 17) 07z e
Py %
o) _ 0%s(V) ,, 0%c(V) wherej(i;) = [AX 4(b;) AY 4(b;) AZg(0n)]"
07 628\11 aZ@q, In order to calculate the minimal solution, we employ the
+Ap éJZ(V) +Ap ;Z(V) (18) semi-implicit scheme used by Kass et al. [42]. The smooth-

ness term is treated implicitly, while the data terms are
Rewriting the transformation using am x 1 vector B treated explicitly. LettingV; represent the mesh at iteration
whose elements arg;, §;, and 3 in the appropriate slots ¢ andV,_; represent the mesh at the previous iteratiert,



we have

Oé(Xt —thl)
a(Yy = Y1)
Oé(Zt — Zt—l)

KX,

e > (vei—X[,B)B
(éi,ci)ec

A D (AX (i) — XTF)F; =0
v, €EB

KY; (33)

)\C Z (yczfyvtrz_le)B
(éi,c5)€C

Ap > (AY (i) = YT F)F; =0
v, EB

KZ, (34)

e Y. (-2 ,B)B
(éi,ci)EC

Ap > (d(xi,y:) — Z"F)F;
=1

(32)

A Y (AZy(0;) — ZTF)F, =0,
v, EB

wherea > 0 is the adaptation rate.
Rearranging terms leads to

(K + o)X,

(K + al)Y;

(K 4 ol)Z,

O(Xt_1 (35)
+Ax¢ Y. (- X/ ,B)B
((A,',,,Ci)ec
+A5 > (AX 4(0;) — XTF)F;
v; €EB
aYiq (36)

+ > (ya-Y",B)B
(éi,c,’,)ec
+AB > (AY 4(i;) = YT F)F,
v; €EB
aZy_4 (37)

+ > (2—-2,B)B
(éi,c,;)GC

+Ap > (d(zi,y;) — ZTF)F;
i=1

+AB > (AZy(0;) — Z"F)F;
v; €EB

Solving this equation for the unknown$§;, Y;, andZ; yields
the desired result as an iterative sparse linear system.

IV. EXPERIMENTAL RESULTS

We captured RGBD video sequences of shirts and postefsy of the texture located on the object does not affect the

to test our proposed method’s ability to handle differem-no

Side View .‘

Top View

N
Raw Data Without Depth ~ With Depth

Fig. 4. The depth term improves results significantly. Frofh tie right:
the input point cloud, the estimated mesh without using thehdigsm, and
the estimated mesh using the depth term.

A. lllustrating the contribution of the depth term

Figure 4 compares the algorithm with and without the
depth term, but with the smoothness and correspondence
term in both cases. The depth term causes the triangular mesh
model to adhere to the object along thaxis perpendicular
to the image plane. As shown in the figure, the resulting 3D
meshes more accurately capture the current configuration of
the object when the depth term is included. The improvement
is especially noticeable in untextured areas.

B. lllustrating the contribution of the boundary term

Figure 5 compares the algorithm with and without the
boundary term, using the smoothness, correspondence, and
depth term in both cases. The boundary term introduces
lateral forces to cause the mesh to adhere to the object
in areas near the contour of the object. The improvement
resulting from the term is clear from the figure. Note also
the subtle error along the top edge of the object, where the
depth term alone raises the top corners (making it appear as
though the top middle was sagging), as described in Figure 3.

C. Partial self-occlusion

Figure 6 demonstrates a sequence of a T-shirt that partially
occludes itself. In this experiment, it is shown that losing

end result. Rather, the algorithm is still able to estimate t

rigid objects in a variety of scenarios. We also verified theqdiguration of the shirt throughout the entire sequence,
contributions made by the novel depth and boundary energy,o, "\yithout all the feature correspondences. The shirt was
terms to the accuracy of the.estlmated object Conf_'gurat'oﬂccluded by holding it by the shoulders and laying the lower
For our experiments, the weights were set accordingdo one-third of the shirt over a chair while lowering the other
=13, A5 =038, andAp =0.6. Further results of the system ., thirgs behind the rest of the chair. The figure shows the
can be seen in the online vidéo. triangular mesh overlaid on the 2D RGB image, along with

Lhttp:/Avww.ces.clemson.edu/"sth/research/laurmryeestimation a side view of the 3D mesh.



Fig. 6.
side of the 3D mesh with 45° pan angle.

e

o
Y

Raw Data {\Ifs,\Ifc} {\Ils,\pc,\I/D} All

Fig. 5. The improvement resulting from the various terms. Frefhtb
right: texture mapped point cloud of RGBD input data, the mestulting
from only the smoothness and correspondence terms, the mestafirout
the boundary term, and the mesh resulting from all the termsnRFop to
bottom: top view, front view, and side view with5° pan.

D. Textureless shirt sequence

Four frames of a sequence in which a shirt partiallylumtes itself. Top: The estimated mesh overlaid on the RGB color image. Bottom: a

V. CONCLUSION

We have presented an algorithm to estimate the 3D config-
uration of a nonrigid object through a video sequence using
feature point correspondence, depth, and boundary informa
tion. We incorporate these terms into an energy functional
that is minimized using a semi-implicit scheme, leading to
an iterative sparse linear system. Results show the ability
of the technique to track and estimate the configuration of
nonrigid objects in a variety of scenarios. We also examine
the reasons behind the need for the novel depth and boundary
energy terms. In the future we plan to extend this research
to handle a two-sided 3D triangular mesh that covers both
the front and back of the object. We also will include color
information along with depth information to provide a more
accurate segmentation of the object from the background.
Another step is to integrate this algorithm into a robotic
system that can grasp and handle non-rigid objects in an
unstructured environment.
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